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s
ABSTRACT | ,) ?) /}

The scope of this study covers the optimization of materials and
structures of cellular aluminum with respect to applications requiring
controlled dissipation of kinetic energy. A design of a linear energy
dissipation system is suggested, and its effective operation demonstrated.
Conclusions are presented relative to the effect of materjial properties

on energy dissipation characteristics.
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INTRODUCT ION

This report covers the second phase of a two-year investigation
of the energy dissipation characteristics of cellular aluminum alloys,
In the first phase,* the compressive properties of cast cellular alum-
inum alloy cylinders were studied. The principal criterion for material
evaluation was high energy absorption at uniform levels of loading
through substantially complete destruction of the material. The effects
of alloy composition, cell structure, heat treatment, and length/diameter
(L/D) ratio were studied. The most promising material was a cast 7075
aluminum alloy, heat treated to high hardness levels.

The purpose of this additional work was to optimize the materials
and structures so that: (1) energy dissipation per unit weight of ma-
terial is increased; (2) the tendency of the material to fail through
catastrophic shear is eliminated; and (3) substantially complete de-
formation of the material (70 percent compression) is accomplished with
minimum load build-up. In addition, data were needed on the behavior
of these materials under conditions of nonaxial loading, should the de-
sign of a specific system require such loading.

A further objective of this phase was to broaden the range of ap-
parent density that could be achieved with the process in order to pro-
vide greater freedom of design in practical applications for the ma-
terials. The material prepared during the earlier study had an apparent
density between 0.85 and 0.95 g/cc with a uniform cell structure. It
was considered desirable to retain the uniform cell structure and, at
the same time, lower the apparent density of the material. Several
possible methods for achieving lower density were suggested during the
earlier investigation. However, none of these was found to be entirely
satisfactory. The present approach to this problem ig somewhat different
than those tried earlier. The method is detailed in this report.

METHODS OF PREPARATION OF MATERTIAL

Casting Practice

One of the characteristics of the method employed for preparation
of the cellular material is that the solidification rate of the alloy
is necessarily slow. Infiltration is accomplished with the aggregate
temperature slightly above the melting point of the alloy. It was
thought thatthere might be some improvement in material properties if

*S. Lipson, "Cellular Aluminum for Use in Energy Dissipation Svstems,"
Frankford Arsenal Report R-1716 (NASA Contractor Report CR-93, Sep 64),
April 1964,

1



the solidification rate could be accelerated. This appeared to be
especially important because the most promising aluminum alloys for the
energy dissipation applications were those of the 7000 series. These
are highly alloyed materials (Al-Zn-Mg-Cu) which normally require ex-
tensive working and heat treatment in order to realize the optimum
combination of mechanical properties.

The slow solidification rate inherent in the cellular metal
process tends to result in a coarse structure. The coarse structure
is difficult to solutionize effectively, especially since no mechanical
working can be employed between casting and heat treatment. It was
hoped that if solidification rates were increased, the resulting re-
finement of the structure would improve the effectiveness of the heat
treatment. Efforts to refine the structure, however, were not suc-
cessful. It was therefore decided that the material processed for use
in this investigation would be handled in the same manner as for the
earlier study.

Density Control

The earlier study reviewed, in some detail, a number of potential
methods for decreasing the apparent density of the cellular metal.
The only effective method found for reducing the apparent density of
the material, however, was one which introduced salt particles small
enough to fit into the interstices of the larger salt particles in the
aggregate. This resulted in a metal structure of nonuniform cell size.
Subsequent tests of these structures revealed that these structures
were undesirable because of their deformation characteristics and the
fact that it was important to retain the uniform cell size distribution
in the cellular structure.

Briefly reviewing the factors which affect the density of the
cellular structures, the tap density achieved in filling the mold
with the granular aggregate is the primary factor affecting the ap-
parent density of the cellular metal which is cast into the aggregate.
The higher the tap density of the aggregate, the lower will be the ap-
parent density of the metal structure.

It was found that the salt particles, which make up the aggregate,
pack in very nearly the same manner that would be predicted from a
model based upon assuming spherical particles of uniform size. Under
these conditions, the particles account for approximately two-thirds
of the volume of the cavity they occupy. If it were possible to ef-
fect further compaction of the aggregate over that resulting from the
simple nesting of the particles, more of the aggregate could be packed
into the mold cavity, less volume would be available for the infiltrat-
ing molten metal and, hence, a lower density cellular metal structure
would result,




A method for controlling the compaction of the granular salt ag-
gregate was therefore sought. One such method was found which proved
to be practical and controcllable. Using this method, a homogeneous
mixture of salt aggregate and a measured quantity of melted wax was
prepared. This mixture was precast into a cylindrical mold and allowed
to solidify. The cast cylinder was then compacted under a pressure of
40,000 psi. Under these conditions, the wax-salt mixture became fully
compacted, as shown in Figure 1.

The compact was then fired at a temperature of 1250° F to oxidize
the wax component of the mixture. The remaining salt was in the form
of a sintered briquette, and is also shown in Figure 1. Examination
of this briquette shows that the particles are practically unaltered
in shape, except that they are arranged in a more compact form and the
outer particles conform to the curvature of the cylinder wall. There
is no evidence of fracturing of the salt crystals. The volume of void
space existing between the particles was found to be equivalent to the
volume of wax introduced into the original mixture. This compacted
briquette may be compared with the appearance of the loosely packed
and sintered briquette, also shown in Figure 1.

The extent of density control possible with the wax method is
shown in Figure 2. The points represent cellular aluminum prepared
from 30 mesh salt plus various amounts of wax. The slope of the line
drawn through the data points is such that an extrapolation of the
line would cause it to intersect the origin. This is further evidence
that the apparent density of the cellular structure is imwersely pro-
portional to the quantity of wax introduced into the mixture.

Comprassion Testing

In general, cellular aluminum alloy structures can be uniformly
compressed as much as 70 percent of the specimen length. In the case
of ductile compositions, this type behavior is characteristic for
columns having a length-to-diameter ratio (L/D) up to approximately
2.5. With columns having a greater slenderness ratio, a buckling ten-
dency develops comparatively early in the test. With stronger alloys,
which are inherently less ductile, a tendency for shear failure de-
velops early in the loading cycle. This was observed even when the
L/D ratio was as small as 1.0. Premature failures such as these
limit the deformation that can be realized in the material and, con-
sequently, the potential for dissipation of energy is similarly
limited. 1In the case of the higher strength materials, the severe
limitations governing their slenderness ratio would also limit the
stroke that could be tolerated in an energy dissipation device,
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Figure 2, Effect of Wax-Aggregate Ratio on the
Apparent Density of Cellular 7075 Alloy

One of the methods examined for coping with these problems was to
machine circumferential grooves into the cylinder. It was thought that
uniform compression of the test cylinder would be favored by these
grooves and, thereby, would inhibit the formation of shear planes.
Cylinders, machined with both helical and circumferential grooves, were
tested., It was found that these grooves were of no benefit for inhib-
iting the shear planes in high strength materials and actually promoted
columnar instability in the lower strength ductile alloys, Figure 3
shows two such test pieces, The ductile alloy (356, as cast) shows
the columnar instability, and the high strength alloy (7075-T6) shows
the characteristic shear failure always encountered with longer columms.

As a result of this and other studies of the problem, a reasonable
solution was evolved by preparing columns which were made up of a series
of disc elements, each having an L/D ratio of 0.2 to 0.5. The discs
in the columns were separated from each other by solid 0.025 inch thick
2024~T4 sheet material., These elements were assembled into stacks by
adhesively bonding the assembly., Figure 4 shows the component elements
of this system and an adhesively assembled stack.

In order to evaluate this system, a number of assembled stacks of
discs were tested. The separator plates were prepared with either a
single 3/16 inch hole at the center or with a seriés of four holes
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radially located around the center Licic. Figure 4 shows both the one- .
hole and the five-hole plates. The L/D ratio of these composite cyl-
inders was approximately 2, Two-inch diameter cellular discs were em-
ployed, using disc thicknesses of 1/2 and 3/4 inch. Figure 5 shows

the load deformation curves obtained in testing these composite cylinders.
The compression samples are also shown in this figure.

Although there is some evidence of a tendency toward columnar in-
stability, the formation of catastrophic shear planes was effectively
inhibited. Later in this report additional data will be presented on
the behavior .of the stacked-disc assembly under compression testing.
It was tentatively decided from this series of tests that future
stacked-disc assemblies would employ component discs of 2 inches di-
ameter by 3/4 inches long, and that the one-hole separator plate would
be used. Tests indicated that the five-hole plates were not necessary
to key the assembly during compressive loading.

Quality Control

Compression tests conducted with the stacked-disc assemblies often
showed that one or more of the discs in the stack would be almost com-
pletely collapsed before there was much evidence of deformation in the
companion discs. There were a number of possible explanations for the
variability in behavior. the princ’pal possiblie sources for this varia-
bility being casting quality, heat treatment effectiveness, and material
density.

Every reasonable effort was made to standavdize procedure, but it
was obvious that sufficient differences in quality of the material ex-
isted to lead to differences in material behavior under compression.
In order to avoid the delays that might be expected in trying to track
down and control all possible causes for this variability, it was de-
cided to devise a test for predicting the behavior of the material.

This was accomplished by determining the load that each disc could
support at some small increment of deformation. This was done by pre-
testing the disc and recording the load at 2.0 percent permanent set.
Figure 6 shows a typical data chart recorded with a series of such
tests. The selection of discs was random from a given lot, and the
disc diameters were easily controlled to 2.062 = 0,003 inches. The
slices were sawed to a nominal 3/4 inch thickness, plus or minus 1/64
inch. 1In order to determine if any correlation existed between the
load measurement and the disc weight, the data were plotted as shown
in Figure 7. This shows a well defined band of values, correlating
load with disc weight and density.
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It is therefore apparent that the principal reason for the varia-
bility in compressive behavior is associated with the density variation
observed in the study of the individual discs. By selective grouping
of the cellular discs on the basis of density (i.e., compressive yield
strength), it is possible to prepare columns where each of the com-
ponent discs would deform uniformly under compressive loading. A more
precise examination of the relationship between material density and
compressive yield strength will be presented later in this report.

Table I gives the loads. weights, and disc numbers for a lot of 50
discs employed for one series of tests. These represented a structure
prepared with an uncompacted 40 mesh aggregate having a nominal density
of 0.95 g/cc. Table II presents similar data on a group of discs pre-
pared with a compacted aggregate of the same cell size having a nominal
density of 0.75 g/cc. Both of these Tables are presented in descending
order of load rating. The performance of these discs in assembled
stacks will be discussed later in this report.

Nonaxial Loading

The design of an energy dissipation system using a stacked disc
column must take into account the possibility that it may be loaded at
some angular displacement from axiality. TFor this reason a qualitative
evaluation was attempted in order to assess the consequences of such
loading. These specimens were lcaded between the compression platens of
a 60,000-pound tensile testing machine. The axial load displacement was
effected by fixing to the platens wedges which formed a 10° angle with
the surface of the platens. The surfaces of these wedges were serrated
to prevent slippage of the specimen. FKowever, it was found that the
large horizontal force component caused the testing machine screws to
bind and it was necessary to scale down the standard two-inch diameter
specimens used for the other phases of this study.

A series of 1.5 inch diameter stacked disc assemblies with L/D
ratios ranging between 1 and 2 were prepared. It was found that the
specimens with the lower L/D ratios accommodated to the nonaxial load-
ing and deformed in a manner similar to those which were loaded ax-
ially. The longer specimens, however, developed a shear plane early
in the test, causing the load to fall off precipitously. Figure 8 is
a photograph of typical specimens, showing the observed behavior. The
specimen with an L/D of 1.97 was removed from the testing machine
platens just before it would have separated into two segments.

12
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RESULTS

Tests with Aluminum Separator Plates

The energy dissipation potential of the cellular structures was
determined for the two groups of discs listed in Tables I and II. In
order to evaluate the effect of disc density, selected groups of five
discs each were assembled into test cylinders. The groupings represent
the highest load-bearing materizl and the lowest load-bearing material
in each of the two lots of material. 1In addition, groups representing
the middle values were assembled and similarly tested.

Figure 9 shows the load deformation record obtained for the higher
strength group taken from the 0.95 g/cc density material. Photographs
of the test cylinder were taken at a series of compression increments
and are shown with the test reccrd. Figure 10 shows a similar test
record obtained with the group of discs representing the lower density
lot (0.75 g/cc). These samples also represent the high group from this
lot.

The specific energy dissipation (ft-1b/ib) of these tests groups
was calculated and the data have been plotted in Figure 1l1. Each point
on the curve represents the cumulative energy dissipation resulting
from the cylinder deformation at that point. The curves show that the
load-bearing rating, as determined by the compressive-yield strength,
correlates well with the energy dissipation characteristics of the
stacked disc cylinders.

In order to show more clearly the effect of the compressive-yield
strength of the component discs on the energy dissipation characteris-
tics, the specific energy values at 50 and 70 percent deformation are
plotted in Figure 12 as a function of the average vield strength of
the discs which make up the stack. The points are representative of
two nominal density groups and three density levels selected from each
group. These data show that specific energy discipation correlates
directly with compressive-yield strength. The measured compressive-
vield strength of the componant discs can also be correlated directly
with the apparent density of the material. Figure 13 shows a plot of
compressive-yield strength as affected by the apparent density of the
cellular material.

Tests with Steel Separator Plates

In order to evaluate the effect of the separator material on the
energy dissipation characteristics, two stacks of cylinder were assem-
bled using 0.002 inch thick steel foil separators. The component discs
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were representative of the middle yield strength group from each of
the two lots of discs listed in Tables I and II.

Figure 14 shows the load deformation chart record obtained with
these tests. The thin steel separator does not provide the support ob-
tained with the heavier aluminum separators. As a result, there is a
tendency for the component disecs to break up, rather than deform as
was the case with the aluminum separators.

These steel disc separators, however, do serve to inhibit the
catastrophic shear failure observed with the continuous cellular col-
umns, The test record shows that the load build-up is also inhibited
for deformations up to 70 percent. The break-up of the structure, of
course, results in less efficient utilization of the material. As a
consequence, the energy dissipation resulting from these compression
tests is substantially lower than wnen aluminum separators were used.
The specific energy dissipation at 50 and 70 percent deformation for
both the thin steel separator and the aluminum disc separator columns
follows.

Specific Energy (ft-1ib/1b)

Deformation 0.75 g/cc Structure 0.95 g/cc Structure

%) Steel Aluminum Steel Aluminum

50 5,200 7,000 6,900 11,500

70 7,300 18,500 9,000 23,500
DISCUSSION

Energy Dissipation

One of the objectives of this study of the deformation charac-
teristics of cellular metals was to develop a structure that would
tend to absorb energy at a relatively constant load level. A parallel
objective was that the specific energy dissipation be high in relation
to that of other materials being considered for this purpose.

On the basis of these tests, it must be concluded that these ob-
jectives are fundametnally contradictory for the cellular material.
If deformation of the structure proceeds with maximum involvement of
the material in the structure (as with the aluminum separators), the
resulting compaction raises the load-bearing capacity of the structure.

Hence, the load tends to rise as deformation proceeds. Under conditions

where the material involvement is less efficient and a considerable a-
mount of fragmentation cccurs (as with the thin steel separators), the™
tendency for the load to increase diminishes.
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Quality Coantrol

A correlation exists between yield strength of the cellular struc-
ture and the energy dissipation resulting from compression of the struc-
ture. Since there is also a correlation between yield strength and den-~
sity, it makes possible the employment of the density parameter as a
measure of the energy dissipation potential of the material. The corre-
lation of density with yield strength of the material suggests a method
for quality assurance control of materials of this type.

Under production conditions, it should be desirable to control the
disc dimensions to very close limits. This simplifies the 100 percent
inspection necessary, since a simple weighing would be equivalent to a
density determination. As a second check, compression testing of an
appropriate sample size could verify the quality level of the disc ma-
terial. Appendix A is a recommended procedure for preparation of the
cellular structures and their quality control. This could assist in
the efficient manufacture of energy dissipation elements.

Cellular Material Density

The wax-aggregate compaction method for control of the apparent
density of cellular structures is an effective and practical one. The
observed trend toward lower specific energy values, however, was con-
trary to the primary objectives which were set for these materials.

Fpr this reason, only a limited effort was expended toward development
of the compacted aggregate structures. It is possible that requirements
for lower density structures may develop in the future and, therefore,
some discussion of the nature of these structures would be in order.

The method employed for compaction of the structure results in
flattening of the otherwise equiaxed cells. The structures which
were evaluated, however, represent only .a modest departure from those
produced by loose packing, and the change in cell geometry is minor,
Experience obtained during this study indicated that the lower apparent
density material lacked promise for attainment of high specific energy
dissipation. Several samples which were prepared and tested at density
levels in the 0.3 to 0.4 g/cc range showed relatively low specific en-
ergy values at 70 percent deformation. This suggests that any require-
ment for lower density cellular aluminum structures could only be satis-
fied at some substantial compromise in specific energy dissipation
capacity.
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Design of Energy Dissipation Devices

Energy dissipation devices which employ compressible materials,
such as cellular aluminum, can be designed in two general ways. 1In one,
an unconfined column is crushed. This leads to consideration of buck-
ling and shear as failure mechanisms, limiting the choice of column
geometry (L/D ratio). It also focuses attention on cellular structures
and material properties which minimize buckling and shear. This report
is almost wholly concerned with the interaction of this design concept
with material parameters.

However, there is an equally valid alternate design concept. 1In
this second type of device, the cellular material could also be crushed,
but in a state of confinement. By this means, shear and buckling can be
eliminated as matters of interest, and material parameters can be opti-
mized purely on crushing characteristics.

The design possibilities associated with this second concept are
broad, but the scope of the investigation did not permit consideration
of these matters. One design possibility, however, is suggested as an
illustration of how material behavior can be related to the design of a
device intended to make use of its special characteristics, This design
concept is related to the compressive deformation of cellular aluminum
in a state of confinement. The employment of the device results in the
attainment of the "ideal" load deformation behavior which was unattainable
with crushing of unconfined columns. This design possibility is demon-
strated and discussed in Appendix B of this report,

CONCLUSIONS

On the basis of the earlier work and this continuation of the study
of compressive behavior of cellular aluminum alloys, it may be concluded
that

1. High specific energy dissipation characteristics are associated
with (a) high compressive yield strength; and (b) high apparent density.

2., The principal mode of catastrophic failure associated with com-
pression of ductile cellular aluminum cylinders is columnar instability
and appears which the length to diameter ratio (L/D) is greater than 2.0.

3. The principal mode of catastrophic failure associated with com-

pression of brittle cellular aluminum cylinders is the development of
shear planes at relatively low deformation,
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4, Catastrophic failure of brittle cellular aluminum material can
be inhibited by (a) low L/D ratio (0.2 to 0.5) and (b) stacked-disc con-
struction.

5, Stacked-disc construction of brittle cellular aluminum material
permits L/D ratios up to 2.0.

6. Catastrophic failure (columnar instability or shear) of cellular
aluminum can be prevented by confinement of the material during compres-

sion.

7. Stacked-disc construction is ineffective in inhibiting shear
failure under conditions of nonaxial loading.
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APPENDIX A
RECOMMENDED PROCEDURES FOR PREPARATION OF
ALUMINUM CELLULAR STRUCTURES FOR ENERGY DISSIPATION APPLICATIONS
I. Materials
1. Molds (gypsum-bonded investment material),
2., TFlasks (stainless steel tubing),
3. Patterns
a. Wax (lost wax method)
b, Metal (plaster mold method),
4, Aggregate (salt crystals, 99.95% NaCl).
5. Alloys
a, . 7075-T6 (high strepgth)
b. Al-7% Mg (high ductility).
II. Molding
1. Expendable pattern method (lost wax),.
2. Premanent pattern method (plaster mold).
I1I. Mold Preparation and Filling
1. Expendable pattern
a. Autoclaving for wax removal at 20 psi steam pressure
b. Dry at 400° F (4 to 16 hours)

c. Cool to room temperature and fill with aggregate (use
vibration to insure maximum packing of aggregate).

2. Permanent pattern

Draw pattern and prepare and fill mold; then proceed as in
IIT;1.b and III.l.c.
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Iv. Sintering of Aggregate
Heat mold to 1250° F (12 to 16 hours).
V. Casting (Infiltration) and Solidification

1. Cast at 1400° F melting temperature, using 20 to 60 psi pres-
sure, depending on mesh size of aggregate.

2. Solidify under pressure with water cooling, as shown in

| Figure A-1,
\
i Neg: 36,231,S1171/0RD.64
|
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| UPPER PLATEN
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Figure A-1, Schematic illustration of Method for Infiltration of
Soluble Aggregate and Solidification of Cellular

Metal Castings
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VI. Machining.

Use slow speed, sharp tools, and moderately heavy cuts (unleached
material).

VII. Heat Treatment

1. Solution-treat component units of cellular metal prior to
leaching, in accordance with time and temperature recommended for the
alloys.

2. Quench and age to desired temper,
VIII. Leaching

1. Set up leaching operation, as shown in Figure A-2,

Neg. 36.231.51665/0RD.65

WATER ]I LIQUID
INLET — T LEVEL
CELLULAR ’

MATERIAL |
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STRUCTURE

WATER
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VIBRATION

Flow rate: 1/2 change/hour.

Figure A-2. Schematic illustration of Leaching Tank Set-up
showing Flow of Salt-laden Liquor
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2. Use nonmetallic tank,
3. Support material so that it does not rest on bottom of tank.

4. Use low amplitude vibration to dislodge gas bubbles accumu-
lating in the structure.

5. Replenish liquid at rate of one-half liquid volume change
per hour,

6. Check specific gravity of effluent liquor to determine com-
pletion of leaching process.

7. Check specific gravity of liquid drained from cellular struc-
ture to determine if complete removal of salt has been accomplished.

IX. Drying

Remove liquid (contained in the structure) with centrifuge,  and
complete drying at ambient temperatures., Incompletely leached material
can be detected by salt incrustation on the surface of the material.

). Quality Control

The mechanical properties of cellular material can be correlated
with the apparent density of the material., As a result of this correla-
tion, weight limits can be established for identical components, and the
individual component weights can be a basis for selection or rejection.
Data contained in the body of this report demonstrate the validity of
employing apparent density of the material as a quality criterion.
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APPENDIX B

PROPOSED DESIGN FOR LINEAR LOAD ENERGY DISSIPATION DEVICE

Introduction

The requirement for energy dissipation at constant load has been
difficult to realize by compression of an unconfined column of the
cellular aluminum, In attempting to devise a method whereby energy
dissipation could be effected without the load build-up resulting
from continued compaction of the compressible material, some consid-
eration was given to the principle of the frangible tube device de-
veloped by NASA at Langley Field.*

By substituting a supported cellular metal liner instead of the
frangible tube and effecting controlled deformation of the liner by
forcing a tapered mandrel through it, the linear load characteristics
of the earlier device could be retained, An advantage foreseen for
the lined tube is that the structural integrity of the device is
maintained and, in fact, even the structural contribution of the
liner itself is enhanced during the process of energy dissipation.

Design of Device

Figure B-1 is a schematic illustration of the constant load
energy dissipation device. A hollow cellular cylinder is fitted to
a supporting tube. Energy dissipation is obtained by forcing the
tapered mandrel through the hollow cellular cylinder. The reduc-
tion of cross-sectional areas is controlled by the dimensions of
the component parts of the system. The actual load necessary to
drive the mandrel through the cylinder is affected by the reduction
of cylinder area and the compressive properties of the cylinder ma-
terial. Once the major diameter of the mandrel has entered the cel-
lular cylinder, further increase in load is no longer possible and
the energy required to drive the mandrel the remainder of the way
through the cylinder is a linear function of the mandrel travel.

Testing of Device

Tests were conducted on 2-inch diameter cylinders having cen-
tral holes of varying diameters, but no attempt was made to develop
design data. A number of cellular cylinders were available from
some of the earlier work, and these were tested at two levels of
cross-sectional area reduction,

*J. R. McGehee, "A Preliminary Experimental Investigation of an
Energy Absorption Process Employing Frangible Metal Tubing," Langley
Research Center Technical Note D-1477, Oct 1962.
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Figure B-1 shows sections of these deformed cellular cylinders and
gives the pertinent data relating to the tests, Since the mandrel is
not driven completely through the cylinder, energy dissipation is cal-
culated on the basis of weight of cellular material per unit length and
the load needed to drive the mandrel through the cylinder. The weights
of the supporting tube and the tapered mandrel are not included.

Figure B-2 is a typical load-deformation record obtained with this
device. It is necessary that a lubricant be applied to the mandrel and

to the inside surface of the cylinder. Fine graphite in a kerosene
vehicle was applied for this purpose.

Neg: 36.231.S1532/0RD. 65
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